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1. Introduction

In 2003, Z. Mustafa and B. Sims [16] introduced a more appropriate and
robust notion of a generalized metric space. In such kind of spaces a nonnegative
real number is assigned to every triplet of elements. In [17] they proved some fixed
point results for mapping satisfying sufficient conditions on complete G-metric
space. After that several other fixed point theorems have been proved in G-metric
spaces by many researchers, see [2, 3, 4, 6, 7, 8, 9, 16, 24, 25, 27]. The studies
relevant to metric spaces are being extended to G-metric spaces by several other
researchers. For instance, we noted that a best approximation result in G-metric
spaces established by Nezhad and Mazaheri in [19], the notion of w-distance,
which is relevant to minimization problem in metric spaces [13], has been extended
by Saadati et al. [22] to G-metric spaces. Also, Shatanawi [26] gave the concept of
ordered generalized metric spaces and presented some fixed point results in
ordered G-metric spaces. There has been an important interest to study common
fixed point for a pair of mappings that satisfying some contractive conditions in
metric spaces. Some elegant and interesting results were obtained in this direction
by various authors. In 1976, G. Jungck [10] introduced the notion of commutativity
and presented some common fixed point theorems. Also G. Jungck [11] introduced
the concept of compatible mappings and proved fixed point results. It is noticed
that the problems of fixed point of non-compatible mappings are very important
and considered in a number of research studies, see [12, 21]. Also weaker version
of commutativity has been considered in a large number of works. One such notion
is R-weakly commutativity. This is an extension of weakly commuting mappings
[20, 23].
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2. Preliminaries

The following definitions and results will be needed in this paper.
Definition 1. [16] Let Y be a nonempty set,and let G: Y x Y x Y — R+be a
function satisfying the following axioms:
(G1)G(a,b,c)=0ifa=b=c,
(G2)0< G (a, a, b), foralla, b € Y witha=Db,
(G3) G (a,a,b)<G (a, b, ¢), foralla, b, c € Y withc=b,
(G4) G (a,b,c)=G(a,c,b)=G(b, c,a)=...(symmetry in all variables),
(G5)G(a,b,c)<G(a,s,s)+G(s,b,c), Va,b,c,seY, (rectangle inequality).
Then the function G is called a generalized metric, or more specifically a G-metric
on Y, and the pair (Y, G) is called a G-metric space.
Example 1. [16] Let Y = {X, y}. Define Gon Y x Y x Y by

G(x, %, X) =G(y,y,y) =0, G(X, X, y) =1, G(X, y,y) =2

and extend Gto Y x Y x Y by using the symmetry in the variables. Then it is clear
that (Y, G) is a G-metric space.
Definition 2. [16] Let (Y, G) be a G-metric space and (an) a sequence of points of
Y . A point a € Y is said to be the limit of the sequence (a,), if

lim G (a a,a )=O and we say that the sequence (a,) is G-convergent to a.

n,m—oo T Em

Proposition 1. [16] Let (Y, G) be a G-metric space. Then the following are
equivalent:

(1) (a,) is G-convergent to a.

(2) G (an, an, a) = 0 as n — +oo,

3) G (an, a,a) > 0 as n — +oo,

(2) G (an, am, a) — 0 as n, m — +oo,

Definition 3. [14] Let (Y, G) be a G-metric space. A sequence (an) is called G-

Cauchy if for everye> 0, there is k € N such thatG (a,, a,, 8 ) <e, foralln,

m, 1 > k; that is G(ap, am, &) — 0 asn, m, | — +oo.

Proposition 2. [16] Let (Y, G) be a G-metric space. Then the following are
equivalent:

(1) The sequence (an) is G-Cauchy.

(2) Foreverye> 0, thereisk € Nsuch that G (a,, a,, &) <e, forall

I,n, m>k.

Definition 4. [16] A G-metric space (Y, G) is called G-complete if every G-
Cauchy sequence in (Y, G) is G-convergent in (Y, G).

Proposition 3. [16] Let (Y, G) be a G-metric space. Then for any a, b, c,e €Y, it
follows that

(i)ifG(a,b,c)=0,thena=Db =c;

(i) G (a,b,c) <G (a,a,b) + G (a, a, C);

(iii) G (a, b, b) <2G (b, a, a);

(iv)G(a,b,c)<G(a,e,c)+ G (e, b,c);
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v)G(a,b,c)<23(G(a,b,e)+G(a,e,c)+G(eb,c));
(vi)G(a,b,c)<G(a,e,e) +G(b,e,e) -G (c, e, e).

Proposition 4. [16] Let (Y, G) be a G-metric space. Then the function G (a, b, ¢)
is jointly continuous in all three of its variables.

Proposition 5. [11] Let f and g be weakly compatible self-mappings onaset Y. If f
and g have unique fixed point of coincidence w = fa = ga, then w is the unique
common fixed point of f and g.

Definition 5. [11] Let f and g be two self-mappings on a metric space (Y, d). The

mappings f and g are said to be compatible if limd ( fga,, gfan) =0 , whenever

{a.} is a sequence in Y such that limfa,, =limga, =z forsomez €Y.
n—o0

n—o0
Definition 6. [4] Let (Y, G) be a G-metric space and H: Y — Y be a self-mappings
on (Y, G). Now H is said to be a contraction if
G (Ha, Hb, Hc) <a G (a, b, ¢) for all a, b, ¢ € Y where a € [0, 1). (D)
Clearly every self-mapping H: Y — Y satisfying condition (1) is continuous. To
generalize the condition (2.1) for a pair of self-mappings Sand Hon Y :
G (Sa, Sb, Sc) < o G (Ha, Hb, Hc) for all a, b, ¢ € Y where a € [0, 1). 2
Definition 7. [4] let f and g be two self-mappings on a G-metric space (Y, G). The

two mappings are said to be compatible if IimG(fgan, gfa,, gfan): 0,

whenever {a,} is a sequence in Y such that lim fa, =limga, =z forsomez €Y.

n—o0 n—o0
In 2002, Branciari in [5] introduced a general contractive condition of integral type
as follows.
Theorem 1. [5] Let (Y, d) be a complete metric space, o € (0, 1), and
f: Y — Y is a mapping such that forallx,y €Y,
d (f(x). 7(y)) dxy)

j pdt <o | p(t)dt.

0 0
where ¢: [0, +o0) — [0, +o0) is nonnegative and Lebesgue-integrable mapping
which is summable (i.e., with finite integral) on each compact subset of [0, +o0)

€

such that for each € > 0, J.go(t)dt , then f has a unique fixed point a € Y, such that
0

foreachx e Y, limf" (x)=a.

n—o0
The aim of this research paper is to carry the above idea of integral type contractive
mappings to G-metric spaces.
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3. Main results

In this section, we prove some common fixed point results in the setting of
G-metric spaces by using the idea of integral type contractive mappings. Our first
main result is stated as:

Theorem 2. Let (Y, G) be a complete G-metric space and f, g be two self-
mappings on (Y, G) satisfies the following conditions:

(1) fY) s aY), )
(2) f or g is continuous, (4)
3
G(fa, fb, fc) G(fa,gb,gc) G(ga, fb,gc)
phdtsa [ oM)dt+p [ o)t
0 0 0
G(gc,gb, fc)
v [ . (5)

0
Foreverya, b,c € Yand a, B, y> 0 with 0 < a + 3p + 3y < 1 and ¢: [0,70) —
[0,+0) is a Lebesgue integrable mapping which is summable, non-negative and

such that for each € >0, Jgo(t)dt >0 . Then the mappings f and g have a unique
0

common fixed point in Y provided f and g are compatible maps.

Proof. Let a, be arbitrary in Y. Choose a; € Y such that fa, = ga;. In general we

can choose an.; such thatb, =fa, = gaw1,n=01.2,....
From (5), we have

G( fay, fag,,, fag.;) G( fay 98,1, 98n.1) G(gan, fay.1,98n.1)
p(idt<a [ p)dt+p [ p(t)dt
0 0 0

G(92n, 981, fan,y)
v [ p(t)d
0
G(fa,, fa,, fa,) G( fa, 4, fay,, fa,)
—a [ eMdt+p [ p(t)dt
0 0
G(fayy, fa,, fa,,)
+v J Q)(t) dt.
0
G(fayy, fa,, fa,,;)

~B+v) J p(t)dt.
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By use of (G5) and Proposition 3, we have
G (fa,, fa,, fan+1) <G (fa,, fa,, fa,) + G (fa,, fa,, fa..)
S G (fanfl, fan, fan) + ZG (fan, fan+l, fan+]_).

Then,
G(fay. fa, ;. fay.) G(fa,,.fa  fa.)
[ eMd=@+n [ o)t
0 0
G(fa,,.fa, . fa,)
v [ e
0
ZG( fan , fan+1 , faml)
+ j (p(t)dt}
0
G( fa_fa, fan)
<B+y | et
0
ZG(fan,fan+1 fanﬂ)
+ (2B +2y) | o(t)dt
0
(ﬂ ) G(fa ,fa ,faj
+ 7/ n-1 n n
< o(t)dt
(1-28-2) I ©
G(fanil,fan,fan]
o N UL
0
where | = (ﬂ hl 7/) <1
(1 - 20 — 2;/)
Continuing this process, we get
G(fay.fa, . fay,) G( fay, fa, , fay )
[ eydt<” [ p(t)dt
0 0
Foralln,m € N, n <m, we have
G(bn'bm'bm) G(bn'bnﬂvbml) G(bn+1'bn+2'bn+2)
[ edt= [ o@®dt+ [  p(t)d
0 0 0
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Thus,
lim G(bn, b, bm):0.

This means that {b,} is a G-Cauchy sequence in Y. Since (Y, G) is complete G-
metric  space, therefore, there exists a point p € Y such that

limb, =lim fa, =limga,, = p.
n—oo

n—o0 N—o0

As the mapping f or g is continuous, so we can assume that g is continuous,
therefore lim gfa, =limgga, =gp.
N—o0 N—o0

Also f and g are compatible, therefore, IimG( fga,, ofa,, gfan) =0, this implies

lim fga, =gp.
From (5), we have

G(fga,, fa,, fa, ) G( fga,.0a,.9a,) G(gga,, fa, . ga,)
p(t)dt<a [ p(t)dt+p [ p(t)dt
0 0 0

G(gganvganvfan)
v | e(t)d.
0
Taking limit as n — oo, we have gp = p.
Again from condition (5), we have
(o 1. 1) o(120.95.9,) (ot 15.9,)

p(t)dt<a p(t)dt+p [ p(t)dt

+y p(t)dt.

By taking limit as n — oo, we have p = fp. Therefore, we have gp = fp = p. Thus p
is a common fixed point of f and g.

For uniqueness, we suppose that p1 6= p be another common fixed point of
fand g Then
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G(p,pu 1) G(fp, fpy, fpy)
[ o(t)d= o(t)dt
0 0
G(fp,9py,9p1) G(gp, fpy,0p1)
<o [ pM®dt+p [ p(t)d
0 0
G(gp.gp:. fmy)
v [ p(t)d
0
G(p. Py, 1)
—(@+B+7) J' p(t)dt
0
G(P.py.Py)

< J p(t)dt.
0
This arise contradiction and hence p; = p. The proof is completed.
Corollary 1. Let (Y, G) be a complete G-metric space and f, g be two compatible

self-mappings on (Y, G) satisfies assertions (3), (4) and the following condition:
G( fa, fb, fc) G(a,b,c)

[ e(tydi<l [ o(t)dt,

0 0
foralla, b,c € Yand O<l<1. Then f and g have a unique common fixed point in
Y.
Theorem 3. Let f and g be two weakly compatible self-mappings of a Gmetric
space (Y, G) satisfying conditions (3) and (5) and any one of the subspace f(Y ) or
g(Y ) is complete. Then f and g have a unique common fixed pointin'Y .
Proof. From the main result 3, we conclude that {b,} is a G-Cauchy sequence in Y.
Since either f(Y) or g() is complete, we assume that g(Y) is complete subspace of
Y then the subsequence of {b,} must get a limit in g(Y) be p. Let v € g”'p. Then gv
= p as {b,} is a G-Cauchy sequence containing a convergent subsequence,
therefore the sequence {b,} also convergent implying thereby the convergence of
subsequence of the convergent sequence. Now we can show that fv = p.
Setting a = v, b = a, and p = a,, in condition (5), we have

G(fv, fa,, fa,) G(fv,ga,,0a,) G(gv, fa,,0a,)
[ etydt=a [ o)dtsp [ p(t)d
0 0 0

+v J go(t)dt.

As n — oo in above inequality, we get
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G(fv,p,p) G(fv,p,p)
p(t)dt=a [ o(t)dt.
0

Implies that fv = p.

Therefore, fv = gv = p, that is, v is a coincident point of two mappings f
and g. Since the two mappings f and g are weakly compatible, it follows that fgv =
gfv, that is, fp = gp.

Next we show that fp = p. Further we assume that fp=p.
From condition (5), we seta=p, b =v, p=v, we have
G(fp,p.p) G( fp, fv, fv)

[ o)dt= [ o)t

0

o

G(fp,gv,gv) G(gp, fv,gv)

<o [ p(t)dt+p [ p(t)d

o
o

—(a+B+Y) j o(t)dt

G(fp.p.p)
< j p(t)dt.
0
Which is contradiction and hence fp = p. Therefore, fp = gp = p that is, p is
common fixed point of mappings f and g. We can show the uniqueness as above
easily. The proof is completed.
We now give an example to illustrate Theorem 2.

Example 2. Suppose that Y = [0,1] and also assume that G be the G-metric on Y
xY xY defined as G(a, b, ¢) = [a—b|+|b—c[t|c—a| Va,b,cEY .

o

Then (Y, G) be a G-metric space. We define fa = % andga = a?. Also we

noted that, the mapping f is continuous and f(Y) < g(Y). Also,
G( fa, fb, fc) G(ga,gb,cc)

[ ed<t [ o(t)d,

0
holds for all 3, b,c € Y, % <1 <1 and 0 is the unique common fixed point of f

and g.
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G-metrik fazalarda inteqral tipli sixilmalarla uzlagsmal inikaslarda torpanmoaz
noqts haqqinda bazi iimumi teoremlor

Rohim Sah, 9kbar Zads
XULASO

Magqalads G-metrik fozalarda inteqral tip sixilmalardan istifads etmakls tarpanmoz

ndqtaler haqqinda bozi imumi teoremlor isbat edilir. Alkinan naticalari illlistrasiya eden
misallar verilmisdir.

Acar sozlor: G-metrik fozalar, imumi torpanmoaz ndqto, uzlasan inikaslar, inteqral
tip sixtlmis inikas.

HexoTtopble 0611ue TeopeMbl 0 HEMOABHKHBIX TOYKAX COBMECTHMBIX
0TOOpasKeHMil ¢ UHTErPaJbHOI0 THIIA C)KATUAMU B G-MeTpHYECKHX
NMPOCTPAHCTBAX

Paxum IIlax, Ax6ap Zada
PE3IOME

B nmanHoit paboTe MBI JOKaXXeM HEKOTOpBIE OOIIHe TeOpeMBl O HEMOJBIKHOU
Touyke B G-METpHUUECKOM MPOCTPAHCTBE, UCIIOJb3Ys MOHITUE CKATUSI MHTEIPAJIHOTO THUIIA.
Jaetcs mpumep IS WILTIOCTPAIMH HAIIUX PE3YIbTaTOB.

Karouesnlie ciioBa: G-MeTpHUUECKHE MMPOCTPAHCTBA, OOIIHME HETIOABM)KHBIE TOUKH,
COBMECTHMBIE OTOOpasKeHNS, 0TOOPaKEHHS C HHTEIPAIbHOTO THIIA CXKATHIMHU
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